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@ Overview

What is the long-run behavior of first-order methods in optimization / games?

In optimization:
> Do first-order (= gradient-based) algorithms converge to critical points?

> Are local minimizers selected?

In games:
> Do gradient methods converge to Nash equilibrium?

> Are all Nash equilibria created equal?

Dynamics: from discrete to continuous and back again
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From flows to algorithms
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@ Basic problem

minimize, pa  f(x)

> f non-convex [technical assumptions later]
> f unknown/difficult to manipulate in closed form [low precision methods]
> Single-player game: calculate best responses [more in second part]
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From flows to algorithms
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@ Gradient flows

Gradient flow of a function f:RY - R

x(1) = =V f(x(1)) (GF)

Main property: f is a (strict) Lyapunov function for (GF)

dfjdt=—|vf(x(t))|’<0  w/equalityiff Vf(x) =0

CNRS & Criteo Al Lab



From flows to algorithms
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@ Convergence of gradient flows

Blanket assumptions

» Lipschitz smoothness:
IVf(x")-Vf(x)| <L|x -x| forallx,x"eR* (LS)
> Bounded sublevels:

Lo={xeR?: f(x) <c} isboundedforallc<supf (sub)

Theorem
» Assume: (LS), (sub)
» Then: x(t) converges to crit(f) = {x* e R? : Vf(x*) = 0}

[NB: setwise, not pointwise convergence, cf. Palis Jr. and de Melo, 1982]
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From flows to algorithms
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C

Forward Euler (explicity == gradient descent (GD) [Cauchy, 1847]

Xn+1 = Xn - )/nvf(Xn) (GD)
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From flows to algorithms
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C

Backward Euler (implicit) == proximal gradient (PG) [Martinet, 1970]

Xn+1 = Xn — Vn Vf(Xn+1) (PG)
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From flows to algorithms
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f‘lfS From flows to algorithms: extra-gradient

Midpoint Runge-Kutta (explicit) == extra-gradient (EG) [Korpelevich, 1976]

Xn+1/2 = Xn - )/an(Xn) Xn+1 = Xn - Yan(XnH/Z) (EG)
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f‘lfS From flows to algorithms: extra-gradient
Midpoint Runge-Kutta (explicit) == extra-gradient (EG) [Korpelevich, 1976]
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CF‘IFS From flows to algorithms: extra-gradient

Midpoint Runge-Kutta (explicit) == extra-gradient (EG) [Korpelevich, 1976]
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From flows to algorithms

00000008000

@ Stochastic gradient feedback

In many applications, perfect gradient information is unavailable / too costly:

> Machine learning:
f(x) =N, fi(x) and only a batch of V fi(x) is computable per iteration

> Control / Engineering:
f(x) =E[F(x;w)] and only VF(x; w) can be observed for a random w

> Game Theory / Bandit Learning:
Only f(x) is observable
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@ Stochastic gradient feedback

In many applications, perfect gradient information is unavailable / too costly:

> Machine learning:
f(x) =N, fi(x) and only a batch of V fi(x) is computable per iteration

> Control / Engineering:
f(x) =E[F(x;w)] and only VF(x; w) can be observed for a random w

> Game Theory / Bandit Learning:
Only f(x) is observable

Stochastic first-order oracle (SFO) feedback:

Xy V., = Vf(Xn) + Z, + bn (SFO)
—— N N e o

feedback gradient noise  bias

where Z, is “zero-mean” and b, is “small” (more later)
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From flows to algorithms
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C

Noisy Euler (explicit) = stochastic gradient descent (SGD)

X1 =X = yu[VF(X0) + Wy ] (SGD)
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From flows to algorithms
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@ Example: zeroth-order feedback

Given f:R — R, estimate f'(x) at target point x € R

oy JEHO) -~ f(x=0)
£ = =

Pick u = +1 with probability 1/2. Then:

E[f(x + Su)u] = 3 (x +8) = > f(x - 8)

= Estimate f'(x) with a single query of f at £ = x + du
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@ Example: zeroth-order feedback

Given f:R — R, estimate f'(x) at target point x € R

oy JEHO) -~ f(x=0)
£ = =

Pick u = +1 with probability 1/2. Then:

E[f(x + Su)u] = 3 (x +8) = > f(x - 8)

= Estimate f'(x) with a single query of f at £ = x + du

Algorithm Simultaneous perturbation stochastic approximation [Spall, 1992]

Draw u uniformly from s4
Query X =x+d0u

Get f=f(%)

Set V= (d/d)fu

BwWw N
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From flows to algorithms
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@ The Robbins-Monro template

Generalized Robbins-Monro:
Xns1 =Xy — )’n[Vf(Xn) +Zy + bn] (RM)

with Y, yn = 00, y, = 0,and E[Z,, | X,,..., X1] =0

Examples
» Gradient descent(det.): Z, =0, b, =0
> Proximal gradient (det.): Z, =0, by = Vf(Xus1) — Vf(Xn)
> Extra-gradient(det.): Z, =0, by = Vf(Xy4172) = Vf(Xn)
> Stochastic gradient descent (stoch.): Z, = zero-mean, b, =0

> SPSA(stoch.): Zy = (d/8) f(Xn)Un — Vf5(Xn), bu = Vfs(Xn) - Vf(Xy) where

1
fo(x) = m -/].E5f(x+6u) du

P. Mertikopoulos CNRS & Criteo Al Lab
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@ From algorithms to flows

Basic idea: if y, is “small’, the noise washes out and “lim;_,« (RM) = lim;_,cc (GF)

"
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@ From algorithms to flows

Basic idea: if y, is “small’; the noise washes out and “lim;— e (RM) = lim;—o. (GF)”

— ODE method of stochastic approximation

[Ljung, 1977; Benveniste et al., 1990; Kushner and Yin, 1997; Benaim, 1999]

> Virtual time: 7, = 3}, &

t—1
———— (Xus1 - Xn)
T Tn

n+l —

> Virtual trajectory: X(t) = X, +

> Asymptotic pseudotrajectory (APT):
lim sup |X(¢t+h)—-0,(X(t))]|=0

t—o0 0<h<T
where @;(x) denotes the position at time s of an orbit of (GF) starting at x
> Long run: X(t) tracks (GF) with arbitrary accuracy over windows of arbitrary length

[Benaim and Hirsch, 1995, 1996; Benaim, 1999; Benaim et al., 2005, 2006]
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From algorithms to flows
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@ Stochastic approximation criteria

When is a sequence generated by (RM) an APT?
(A) > X, is bounded

> fis Lipschitz continuous and smooth:
(") = FCI < Glx" - x| (LC)
IVF(x") = V)l <Llx" - x| (LS)
(B)  » E[Z,yilZal*] < oo
> sup, E[|Z4]9] < 0o and £, ;" < o0
> Z, sub-Gaussian and y, = o(1/log n)

(C)  *» ¥, ynbun =0 with probability 1
Proposition (Benaim, 1999; Hsieh, M & Cevher, 2020)
> Assume: any of (A); any of (B); (C)

> Then: X, is an APT of (GF) with probability 1

P. Mertikopoulos CNRS & Criteo Al Lab



From algorithms to flows
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@ Convergence of APTs

Theorem (Benaim and Hirsch, 1995, 1996)
» Assume: X, is a bounded APT of (GF)
> Then: X, converges to crit(f) with probability 1
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@ Convergence of APTs

Theorem (Benaim and Hirsch, 1995, 1996)
» Assume: X, is a bounded APT of (GF)
> Then: X, converges to crit(f) with probability 1

Theorem (Ljung, 1977; Benaim, 1999)
» Assume: (LC), (LS), (sub); sup, | X, | < oo

> Then: X, converges (a.s.) to a component of crit(f) where f is constant

Boundedness: implicit, algorithm-dependent assumption; non-verifiable!
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From algorithms to flows
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@ Can boundedness be dropped?
Key obstacle: infinite plains of vanishing gradients [think f(x) = —exp(—x?)]
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@ Can boundedness be dropped?

Key obstacle: infinite plains of vanishing gradients [think f(x) = —exp(—x?)]

Countered if gradient sublevel sets do not extend to infinity
M.={xeR?: |[Vf(x)| <&} isbounded forsomee>0 (Gsub)

[standard under regularization]
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@ Can boundedness be dropped?

Key obstacle: infinite plains of vanishing gradients [think f(x) = —exp(—x?)]

Countered if gradient sublevel sets do not extend to infinity
M.={xeR?: |[Vf(x)| <&} isbounded forsomee>0 (Gsub)

[standard under regularization]

Proposition (M, Hallak, Kavis & Cevher, 2020)
» Assume: (LC), (LS), (sub), (Gsub)

> Then: forall € > 0, there exists some 7 = 7(¢) such that, for all t > t:
(@) f(x(t)) < f(x(0)) —&or

(b) x(t) is within e-distance of crit(f)

In words: (GF) either descends f by a uniform amount, or it is already near-critical
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@ Can boundedness be dropped?

Proposition
> Assume: (LC), (LS), (sub), (Gsub); any of (B); (C)

» Then: With probability 1, a subsequence of X, converges to crit( f)
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@ Can boundedness be dropped?

Proposition
> Assume: (LC), (LS), (sub), (Gsub); any of (B); (C)

» Then: With probability 1, a subsequence of X, converges to crit( f)

Theorem (M, Hallak, Kavis & Cevher, 2020)
> Assume: (LC), (LS), (sub), (Gsub); any of (B); (C)

> Then: With probability 1, X, converges to a (possibly random) component
of crit(f) over which f is constant

P. Mertikopoulos CNRS & Criteo Al Lab
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@ Are all critical points desirable?

2

Figure: A hyperbolic ridge manifold, typical of ResNet loss landscapes [Li et al., 2018]
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From algorithms to flows
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@ Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

Amin (Hess(f(x*))) <0, det(Hess(f(x*))) %0
= (GF) s linearly unstable near x*

== convergence to x* unlikely
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@ Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

Amin (Hess(f(x*))) <0, det(Hess(f(x*))) %0
= (GF) s linearly unstable near x*

== convergence to x* unlikely

Theorem (Pemantle, 1990)
> Assume:
> x* is a hyperbolic saddle point

> Z, is finite (a.s.) and uniformly exciting

E[(Z,u)*]> ¢ forall unitvectors u € S, x ¢ RY
> e Un

> Then: P(limy—o Xy =x7) =0

P. Mertikopoulos CNRS & Criteo Al Lab
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@ Are non-hyperbolic traps avoided?

Strict saddle

Amin (Hess(f(x7))) <0
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From algorithms to flows
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@ Are non-hyperbolic traps avoided?

Strict saddle

Amin (Hess(f(x7))) <0

Theorem (Ge etal., 2015)
» Given: confidence level { >0

> Assume:
> fis bounded and satisfies (LS)
> Hess(f(x)) is Lipschitz continuous
> forall x e R%: (a) |V f(x)| = & or (b) Amin (Hess(f(x))) < —B; or (c) x is 8-close
to a local minimum x* of f around which f is a-strongly convex

> Zy is finite (a.s.) and contains a component uniformly sampled from the unit
sphere; also, b, = 0

> yn = ywithy = O(1/log(1/{))

» Then: with probability at least 1 — {, SGD produces after O(y *log(1/(y()))
iterations a point which is O(,/ylog(1/(y{)))-close to x* (and hence away
from any strict saddle)
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@ Are non-hyperbolic traps avoided always?

Theorem (M, Hallak, Kavis & Cevher, 2020)

> Assume:
> f satisfies (LC) and (LS)
> Zy is finite (a.s.) and uniformly exciting

E[{Z,u)*]> ¢ forall unitvectors u € $%7!, x e R?
> yu o< 1/nP for some p € (0,1]

» Then: P(X, converges to a set of strict saddle points) = 0

Proof.
Use Pemantle (1990) + differential geometric arguments of Benaim and Hirsch (1995). O

P. Mertikopoulos CNRS & Criteo Al Lab
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Flows in games
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@ Single- vs. multi-agent setting

In single-agent optimization, first-order iterative schemes
> Converge to the problem’s set of critical points

» Avoid spurious, non-minimizing critical manifolds
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@ Single- vs. multi-agent setting

In single-agent optimization, first-order iterative schemes
> Converge to the problem’s set of critical points

» Avoid spurious, non-minimizing critical manifolds

Does this intuition carry over to games?

Do multi-agent learning algorithms
> Converge to unilaterally stable/stationary points?

» Avoid spurious, non-equilibrium points?

P. Mertikopoulos CNRS & Criteo Al Lab



Flows in games
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@ Online decision processes

Agents called to take repeated decisions with minimal information:

forn>0do
Choose action X, [focal agent choice]
Incur loss (,’n(Xn) [depends on all agents]
end for

Driving question: How to choose “good” actions?
> Unknown world: no beliefs, knowledge of the game, etc.

» Minimal information: feedback often limited to incurred losses

P. Mertikopoulos CNRS & Criteo Al Lab



Flows in games

[e]e]e] Jelele)

@ N-player games

The game

> Finite set of playersi e A" = {1,...,N}
» Each player selects an action from a closed convex set X; ¢ R

> Loss of player i given by loss function £;: X =], X; = R

Examples
> Finite games (mixed extensions)
> Divisible good auctions (Kelly)
> Traffic routing
> Power control/allocation problems

> Cournot oligopolies

P. Mertikopoulos CNRS & Criteo Al Lab



Flows in games
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@ Nash equilibrium

Nash equilibrium
Action profile x* = (x{,...,x;,) € X thatis unilaterally stable

0i(x]3x%;) < €i(xi;x%;) forevery player i € N and every deviation x; € X;

*> Local Nash equilibrium: local version [stable under local deviations]

> Critical point: unilateral stationarit [x] is stationary for €; (-, x*.)]
P y i Y i

P. Mertikopoulos CNRS & Criteo Al Lab
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@ Nash equilibrium

Nash equilibrium
Action profile x* = (x{,...,x;,) € X thatis unilaterally stable

0i(x]3x%;) < €i(xi;x%;) forevery player i € N and every deviation x; € X;
*> Local Nash equilibrium: local version [stable under local deviations]

> Critical point: unilateral stationarity [x] is stationary for €; (-, x*,)]

Individual loss gradients
Vi(x) = V Ci(xis x-1)

== individually steepest variation
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@ Nash equilibrium

Nash equilibrium
Action profile x* = (x{,...,x;,) € X thatis unilaterally stable

0i(x]3x%;) < €i(xi;x%;) forevery player i € N and every deviation x; € X;

*> Local Nash equilibrium: local version [stable under local deviations]

> Critical point: unilateral stationarity [x] is stationary for €; (-, x*,)]

Individual loss gradients
Vi(x) = V Ci(xis x-1)

== individually steepest variation

Variational characterization
If x* is a (local) Nash equilibrium, then

(Vi(x™),xi —x{)20 forallie N, x; e X;

Intuition: £;(x;;x*;) weakly increasing along all rays emanating from x;

P. Mertikopoulos CNRS & Criteo Al Lab



Flows in games
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@ Geometric interpretation

TC(x™)

At Nash equilibrium, individual descent directions are outward-pointing

P. Mertikopoulos CNRS & Criteo Al Lab



Flows in games
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@ First-order algorithms in games

Individual gradient field V(x) = (Vi(x),..., Vn(x)), x = (x1,...,xn)

*> Individual gradient descent:

Xn+1 =Xn - Yn V(Xn)

> Extra-gradient:

Xn+1/2 =Xn- ane(Xn) Xn1 =X — ane(XyH-l/z)

Mean dynamics:
x(t) ==V(x(1)) (MD)

== no longer a gradient system

P. Mertikopoulos CNRS & Criteo Al Lab
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Monotone games
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Monotone games
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@ The dynamics of min-max games

Bilinear min-max games (saddle-point problems)

min max L(x;,%) = (x1 — b)) A(x2 — by) (SP)
X1€X] x€ X,

[no constraints: X} = R%, X, = ]Rdz]

Mean dynamics:

5(1 = —A(XZ - hz) J'Cz = AT (Xl - bl)

P. Mertikopoulos CNRS & Criteo Al Lab



Monotone games
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@ The dynamics of min-max games

Bilinear min-max games (saddle-point problems)

min max L(x;,%) = (x1 — b)) A(x2 — by) (SP)

X1€X] x€ X,

[no constraints: X} = R%, X, = ]Rdz]

Mean dynamics:

5(1 = —A(XZ - hz) J'Cz = AT (Xl - bl)

Energy function:
1 2 1 2
E(x)=z|x1-bi|" +Z|x2-b
() = 3 b0~ bl + S~ ]

Lyapunov property:
dE
T <0 w/equalityif A=A"

— distance to solutions (weakly) decreasing along (MD)

P. Mertikopoulos CNRS & Criteo Al Lab



Monotone games
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@ Cycles

Roadblock: the energy might be a constant of motion [Hofbauer et al., 2009]

1.0

0.5

-10 -05 00 05 10
X

Figure: Hamiltonian flow of L(x1, x2) = x1x2
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Monotone games
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Poincaré recurrence

Definition (Poincaré, 1890's)
A dynamical system is Poincaré recurrent if almost all solution trajectories return
infinitely close to their starting point infinitely many times




Monotone games
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@ Poincaré recurrence

Definition (Poincaré, 1890's)
A dynamical system is Poincaré recurrent if almost all solution trajectories return
infinitely close to their starting point infinitely many times

Theorem (m, Papadimitriou, Piliouras, 2018; unconstrained version)
(MD) is Poincaré recurrent in all bilinear min-max games that admit an equilibrium

CNRS & Criteo Al Lab



Monotone games

[e]e]e]e] Jelele]e]

@ Learning in min-max games: gradient descent

Individual gradient descent:

Xn+1 = X — Vn V(Xn)
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Monotone games
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@ Learning in min-max games: gradient descent

Individual gradient descent:
Xn+1 = X — Vn V(Xn)
Energy no longer a constant:

1 " 1 * w1
X =5 1P = 21X =57 1+ s (VO ) 45 7 VCK)IP

from (MD) discretization error

...even worse
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Monotone games

[e]e]e]e] Jelele]e]
@ Learning in min-max games: gradient descent

Individual gradient descent:

Xn+1 = X — Vn V(Xn)
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Monotone games
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@ Learning in min-max games: extra-gradient

Extra-gradient:

Xn+1/2 =X, - ang(Xn) Xns1 =X — ane(XnH/Z)
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Monotone games
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@ Learning in min-max games

Long-run behavior of min-max learning algorithms:

> Mean dynamics: Poincaré recurrent (periodic orbits)
X Individual gradient descent: divergence (outward spirals)

v Extra-gradient: convergence (inward spirals)
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Monotone games
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@ Learning in min-max games

Long-run behavior of min-max learning algorithms:

> Mean dynamics: Poincaré recurrent (periodic orbits)
X Individual gradient descent: divergence (outward spirals)

v Extra-gradient: convergence (inward spirals)

Different outcomes despite same underlying dynamics!
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Monotone games
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@ Monotonicity and strict monotonicity

Bilinear games are special cases of monotone games:
(V(£) = V(x),x" =x)>0 forallx,x" e X (MC)

[ = strictly monotone if (MC) is strict for x # x']
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Monotone games
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@ Monotonicity and strict monotonicity

Bilinear games are special cases of monotone games:
(V(£) = V(x),x" =x)>0 forallx,x" e X (MC)
[ = strictly monotone if (MC) is strict for x # x']

Equivalently: H(x) > 0 where H is the game’s Hessian matrix:

1 1
Hij(x) = vajvxjfi(X) * E(vxiv"jgj(x))T
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Monotone games
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@ Monotonicity and strict monotonicity

Bilinear games are special cases of monotone games:
(V(£) = V(x),x" =x)>0 forallx,x" e X (MC)
[ = strictly monotone if (MC) is strict for x # x']

Equivalently: H(x) > 0 where H is the game’s Hessian matrix:

1 1
Hij(x) = vajvxjfi(X) * E(vxiv"jgj(x))T

Examples: bilinear games (not strict), Kelly auctions, Cournot markets, routing, ...

Nomenclature:

> Diagonal strict convexity [Rosen, 1965]
> Stable games [Hofbauer and Sandholm, 2009]
> Contractive games [Sandholm, 2015]
> Dissipative games [Sorin and Wan, 2016]
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Monotone games
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@ Convergence to equilibrium

Different behavior under strict monotonicity:

1 %112 1 %2 * 1 2 2
P = L1y (V). X)L V()

> 0 if X,; not Nash discretization error

Can the drift overcome the discretization error?
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Monotone games
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@ Convergence to equilibrium

Different behavior under strict monotonicity:

1 %112 1 %2 * 1 2 2
P = L1y (V). X)L V()

> 0 if X,; not Nash discretization error

Can the drift overcome the discretization error?

Theorem (M & Zhou, 2019)
> Assume: strict monotonicity; any of (A); any of (B); (C)

> Then: any generalized Robbins-Monro learning algorithm converges to the
game’s (unique) Nash equilibrium with probability 1

In strictly monotone games, gradient methods ~ Nash equilibrium

P. Mertikopoulos CNRS & Criteo Al Lab



Spurious limits
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Spurious limits
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@ Almost bilinear games

Consider the “almost bilinear” game

min max  L(x1,x2) = xix2 + e¢(x2)
x1€X] x2€ X,

where £ > 0 and ¢(x) = (1/2)x* - (1/4)x*

Properties:

> Unique critical point at the origin
> Not Nash; unstable under (MD)

> (MD) attracted to unique, stable limit cycle from almost all initial conditions
[Hsieh, M & Cevher, 2020]
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Spurious limits
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Spurious limits in almost bilinear games

Trajectories of (RM) converge to a spurious cycle that contains no critical points

Figure: Left: (MD); center: SGD; right: stochastic extra-gradient (SEG)




Spurious limits
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@ Forsaken solutions

Another almost bilinear game

min max  L(xi,x2) = x1x2 + e[¢(x1) — ¢(x2)]
x1€X] x2€ X,

where ¢ > 0 and ¢(x) = (1/4)x* — (1/2)x* + (1/6)x°

Properties:

> Unique critical point at the origin
» Local Nash equilibrium; stable under (MD)
> Two isolated periodic orbits:
> One unstable, shielding equilibrium, but small
> One stable, attracts all trajectories of (MD) outside small basin

[Hsieh, M & Cevher, 2020]
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Spurious limits
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Forsaken solutions in almost bilinear games

With high probability, (RM) forsakes the game’s unique (local) equilibrium

Figure: Left: (MD); center: SGD; right: SEG




Spurious limits
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@ The limits of gradient-based learning in games

Limit cycles == internally chain transitive (ICT) = invariant, no proper attractors

Examples of ICT sets
» V = V¢ = components of critical points
> L(x1,x2) = x1x, == any annular region centered on (0,0)

> Almost bilinear = isolated periodic orbits + unique stationary point
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Spurious limits
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@ The limits of gradient-based learning in games

Limit cycles == internally chain transitive (ICT) = invariant, no proper attractors

Examples of ICT sets
» V = V¢ = components of critical points
> L(x1,x2) = x1x, == any annular region centered on (0,0)

> Almost bilinear = isolated periodic orbits + unique stationary point

Theorem (Hsieh, M & Cevher, 2020)
> Assume: any of (A); any of (B); (C)
> Then:
> X, converges to an ICT of (MD) with probability 1
> (RM) converges to attractors of (MD) with arbitrarily high probability
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@ Conclusions

In contrast to single-agent problems (optimization), game-theoretic learning

> May have limit points that are neither stable nor stationary
» Cannot avoid spurious, non-equilibrium points with positive probability

> Different approach needed (mixed-strategy learning, multiple-timescales...)
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@ Conclusions

In contrast to single-agent problems (optimization), game-theoretic learning

> May have limit points that are neither stable nor stationary
» Cannot avoid spurious, non-equilibrium points with positive probability

> Different approach needed (mixed-strategy learning, multiple-timescales...)

What about finite games?

> Limit cycles may still appear

> Which Nash equilibria are stable under no-regret learning?
[stay tuned to CorelLab FM @]
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